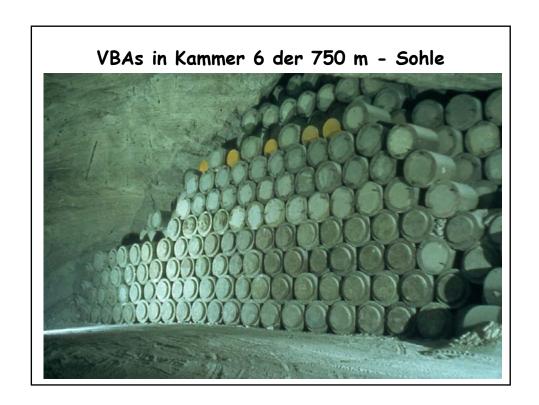
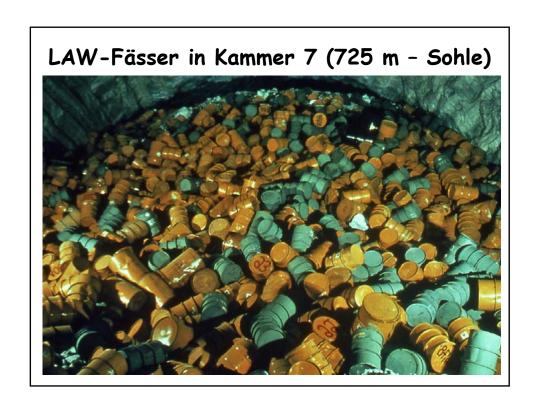
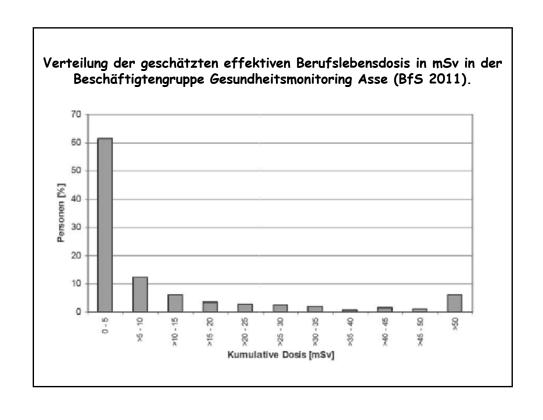


Strahlenexpositionen der Beschäftigten in der Schachtanlage Asse II


nach dem Gesundheitsmonitoring Asse des BfS (2011)





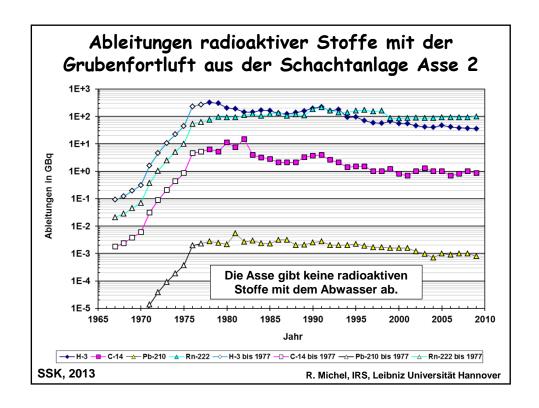
Strahlenexposition der Bevölkerung durch Ableitungen radioaktiver Stoffe aus der Schachtanlage Asse II

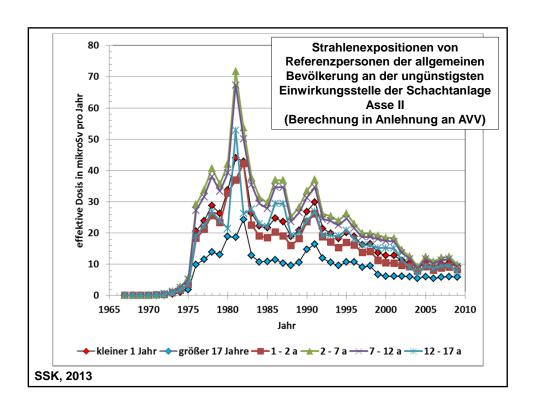
Krebshäufigkeit in der Samtgemeinde Asse

Stellungnahme der Strahlenschutzkommission (SSK) mit wissenschaftlicher Begründung

Verabschiedet in der 260. Sitzung der SSK am 28. Februar 2013

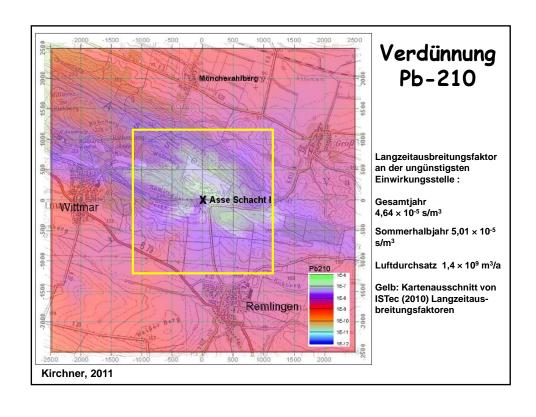
R. Michel, IRS, Leibniz Universität Hannover

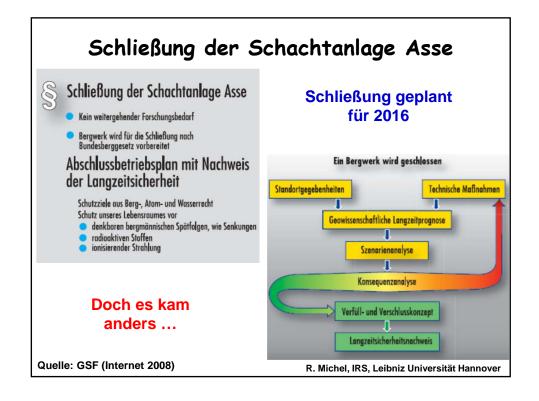

Krebshäufigkeit in der Samtgemeinde Asse


Das Epidemiologische Krebsregister Niedersachsen (EKN) hat im Dezember 2010 in Auswertungen erhöhte Krebshäufigkeiten (Leukämien und Schilddrüsenkrebs) in der Samtgemeinde Asse für die Jahre 2002 bis 2009 festgestellt.

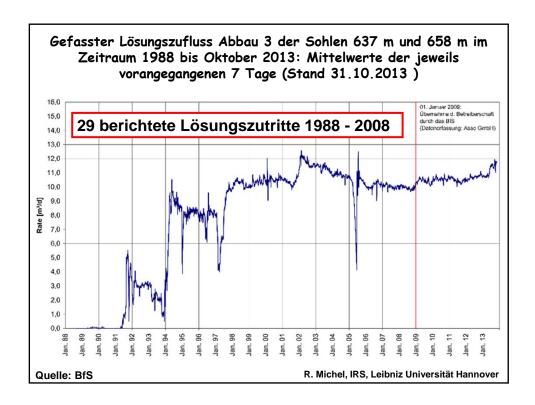
In 8 Jahren wurden ca. 10 zusätzliche Fälle von Leukämie und ca. 8 zusätzliche Fälle von Schilddrüsenkrebs beobachtet.

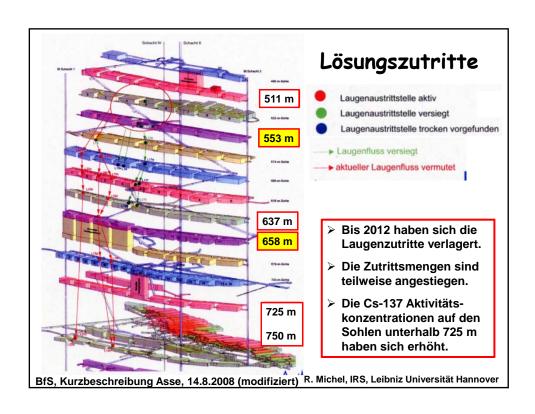
Die Strahlenschutzkommission weist in ihrer Stellungnahme "Erhöhte Krebshäufigkeit in der Samtgemeinde Asse" darauf hin, dass die Strahlenexposition der Bevölkerung in der Umgebung der Schachtanlage Asse II nur auf der Grundlage von Modellrechnungen abgeschätzt werden kann. Die Ableitungen von radioaktiven Stoffen mit der Fortluft aus der Schachtanlage Asse II führen zu keinerlei messbaren Konzentration in der Umwelt. Auf der Grundlage extrem konservativer Modellierung der potenziellen Strahlenexpositionen der Bevölkerung in der Umgebung der Schachtanlage Asse II ergeben sich lediglich vernachlässigbare Jahresdosen, die nicht hinreichen, die beobachtete erhöhte Krebshäufigkeit zu erklären.



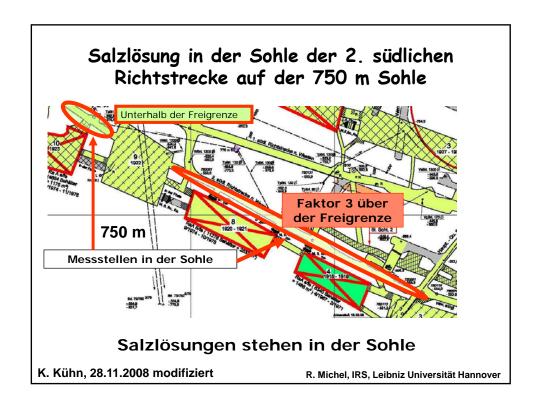


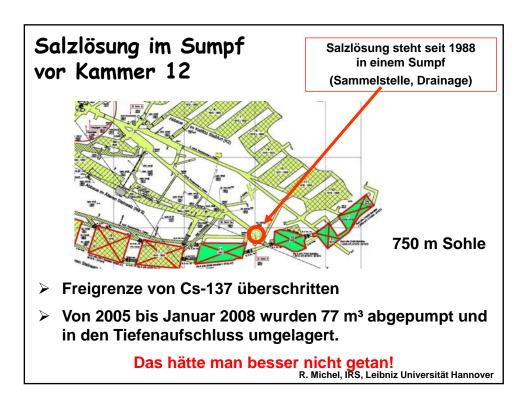
Akkumulierte Strahlenexposition einer im Jahr 1978 geborenen Referenzperson bis zum Jahr 2009


berechnet nach der AVV zu §47 StrlSchV

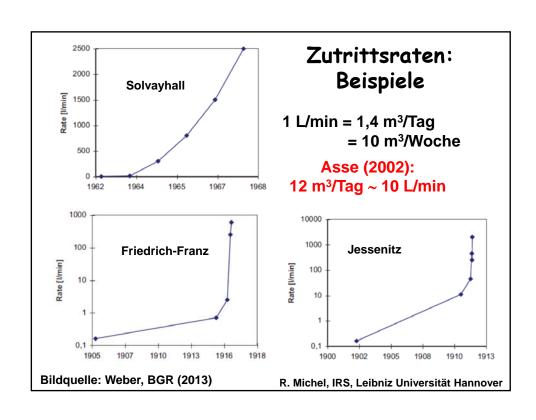

	ungünstigste Einwirkungs- stelle am Zaun der Schacht- anlage Asse II	die nächstgelegenen Orte Remlingen und Wittmar		weiter entfernte Orte der SG Asse	
Ausbreitungs- modell	Gauß	Gauß	Lagrange	Gauß	Lagrange
Verdünnungs- faktor	1	10	100 – 1000	100	1000 – 10.000
Effektive Dosis in μSv	500	50	5 – 0,5	5	0,5 - 0,05
Organdosis rotes Knochenmark in µSv	700	70	7 – 0,7	7	0,7 - 0,07
Schilddrüsen- dosis in µSv	200	20	2 - 0,2	2	0,2 - 0,02

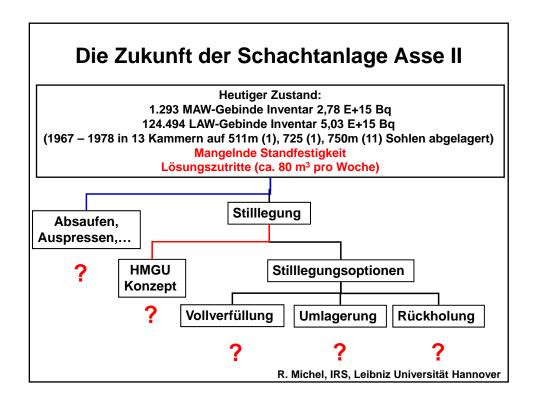
SSK, 2013 Natürliche Strahlenexposition im gleichen Zeitraum ca. 61.000 μ Sv.





Laugensumpf vor Kammer 12/750m, 8.7.2008




Ein Absaufen der Schachtanlage Asse II ist die wahrscheinliche Entwicklung.

Der Zeitpunkt ist nicht vorhersagbar!

Beim Absaufen haben sich die Lösungszutritte häufig exponentiell erhöht.

BfS (2009) Stilllegung Asse II -Ergebnis des Optionenvergleichs Rang 2 Rang 1 Rang 3 ٧ U (1) Sicherheit in der Betriebsphase R (2) Umweltauswirkungen bei V R U unbeherrschbarem Lösungszutritt (3) Vorläufige Langzeitsicherheits-R U einschätzung ٧ (4) Machbarkeit R U ٧ (5) Zeitbedarf R U ٧ U Gesamtrangfolge R

BfS 22.12.2009

Strahlenexpositionen von Personal und Bevölkerung im Betrieb bei Rückholung

Variante	VBA /	Rückgeholtes	Abfall-	Ausschöpfungsgrade der	Zeit-
	nVBA*	LAW-Aktivitäts-	volumen	Grenzwerte der Strahlen-	bedarf
	[Anzahl]	inventar [%]	[m³]	exposition: Personal /	[Jahre]
				Bevölkerung. [%]	
1	12.668 /	70	14.820	5 / 11	2,8
	0				
2	14.736 /	92	28.450	15 / 27	4,1
	26.593				
3	14.779 /	100	61.640	50 / 27	7,7
	109.707				
4	14.779 /	100	126.610	50 / 27	14,6**
	109.707				

VBA: Gebinde mit verlorener Betonabschirmung, nVBA: Gebinde ohne diese Abschirmung

DMT GmbH, TÜV Nord Systec: Möglichkeit einer Rückholung der LAW-Abfälle aus der Schachtanlage Asse II 25.09.2009 (Kurzfassung S-240/U 1a) R. Michel, IRS, Leibniz Universität Hannover

Langfristige Strahlenexposition der Bevölkerung bei Vollverfüllung

Lediglich Bezugnahme auf HMGU Konzept.

Es wurden keinerlei eigene Abschätzungen gemacht.

Allerdings wurde gesagt

^{**} Hauptursache für den Zeitanstieg: Wechsel vom Anordnungsverfahren zum Planfeststellungsverfahren

Option: Vollverfüllung

Der Umstand, dass die für das Bezugskonzept /HMGU 2007/ ermittelten potenziellen Strahlenexpositionen im Bereich der Maxima nur relativ wenig unterhalb des Werts von 0,3 mSv/a liegen, führt deshalb zu folgender Aussage:

Eine Stilllegung gemäß dem Konzept Vollverfüllung führt nach Ansicht der Autoren zu einem System, das im Rahmen der bestehenden Bedingungen radiologisch langzeitsicher ist. Es kann jedoch nicht belastbar vorhergesagt werden, ob der Nachweis gelingen wird, dass der Wert von 0,3 mSv/a für die effektive Dosis mit hoher Wahrscheinlichkeit und hohem Konfidenzgrad für alle zu betrachtenden Szenarien zuverlässig unterschritten wird.

AF-Colenco, GRS, IfG 2009

R. Michel, IRS, Leibniz Universität Hannover

Faktenerhebung zur Rückholung

Die Dosisabschätzungen des Optionenvergleichs haben sehr große Unsicherheiten und reichen für eine Bewertung der Optionen nicht aus.

Vorhandene Unsicherheiten bei der Rückholung:

- · Zustand der Gebinde
- Gebirgsmechanische Einwirkungen in den Einlagerungskammern und auf die Gebinde
- Überprüfung der Maschinentechnik für die Rückholung
- Zeitbedarfe
- ⇒ Faktenerhebung mit dem Ziel, die Unsicherheiten zu klären und der Bewertung der tatsächlichen Strahlenexpositionen bei der Rückholung aller Abfälle

Faktenerhebung zur Rückholung Welche Einlagerungskammern sollen einbezogen werden? R. Michel, IRS, Leibniz Universität Hannover

Faktenerhebung zur Rückholung

Schritte der Faktenerhebung

BfS und BMU haben 3 Schritte zur Faktenerhebung abgestimmt:

Schritt 1: Anbohren der Kammern und erste Untersuchungen

über die Bohrungen

Schritt 2: Öffnen der Kammern und Bewertung der Gebindezustände

Schritt 3: Bergen erster Abfallgebinde bzw. Abfälle

Vor Schritt 2 der Faktenerhebung müssen Vorsorgeund Notfallmaßnahmen durchgeführt werden.

Vorsorgemaßnahmen umfassen die Planung, Vorbereitung und Durchführung ...

- der Verfüllung von Resthohlräumen im Nahbereich der MAW-Kammer 8a/511 auf der 532-m-Sohle, 511-m- und 490-m-Sohle.
- von Maßnahmen zur Abdichtung und Stabilisierung von Grubenbereichen von der 775-m- bis zur 700-m-Sohle, z. B. das Verfüllen und Abdichten von Grubenbereichen und das Errichten von geotechnischen Bauwerken im Nahbereich der Einlagerungskammern,
- von Maßnahmen zur Abdichtung potentieller Schwachstellen der salinaren Schutzschicht, z. B. die Verfüllung und Abdichtung der Erkundungsstrecke südlich des Abbaus 3/750,
- von Maßnahmen zur Begrenzung der Gasbildung, z. B. das Entfernen gasbildender Stoffe (Metall, Holz, Kunststoffe),
- der Verfüllung von Resthohlräumen zur Verringerung der Konvergenz und zur eventuellen Verlängerung der Transportzeit für Schadstoffe, z. B. die Verfüllung nicht mehr benötigter Grubenhohlräume (u. a. Firstspalten, Blindschächte, Großlochbohrungen etc.),
- der Bereitstellung der erforderlichen Materialressourcen zur Baustoffproduktion und Verfüllung, z. B. die Anlieferung von MgCl₂-reicher Lösung für die Gegenflutung des Grubengebäudes.

R. Michel, IRS, Leibniz Universität Hannover

Notfallmaßnahmen beim Eintritt eines unbeherrschbaren Lösungszutritt und einem Rückzug aus der Schachtanlage umfassen ...

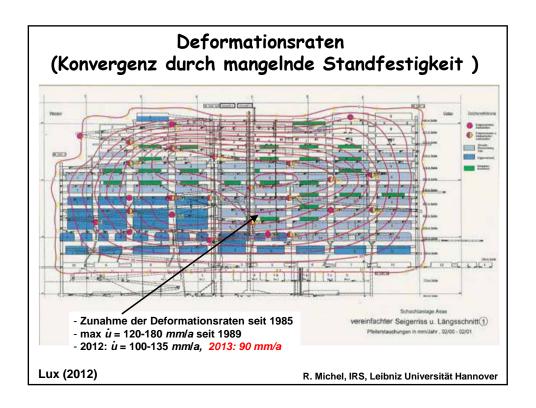
- die Verfüllung der Resthohlräume in der Einlagerungskammer für mittel radioaktive Abfälle (MAW-Kammer) mit Sorelbeton,
- die Verfüllung der Resthohlräume in den Einlagerungskammern für schwach radioaktive Abfälle (LAW-Kammern) mit Brucitmörtel,
- > die Verfüllung und der Verschluss der Tagesschächte,
- das Einleiten (Gegenfluten) von MgCl₂-reicher Lösung, optional die pneumatische Druckbeaufschlagung des Grubengebäudes während der Gegenflutung des Grubengebäudes mit MgCl₂-reicher Lösung.

Änderung des AtG durch das sog. Lex Asse (Bundesgesetzblatt 2013 Teil I Nr. 19, 24. April 2013 p. 921)

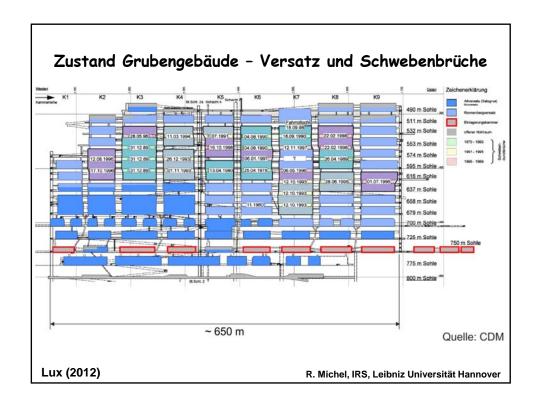
§ 57b Betrieb und Stilllegung der Schachtanlage Asse II (Auszug)

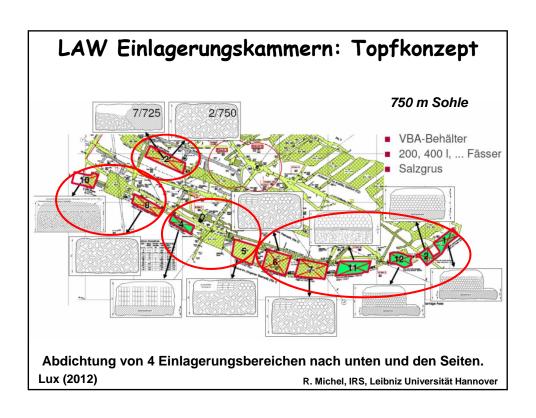
(2) Die Schachtanlage ist unverzüglich stillzulegen. ... Die Stilllegung soll nach Rückholung der radioaktiven Abfälle erfolgen. Die Rückholung ist abzubrechen, wenn deren Durchführung für die Bevölkerung und die Beschäftigten aus radiologischen oder sonstigen sicherheitsrelevanten Gründen nicht vertretbar ist. Dies ist insbesondere der Fall, wenn die Dosisbegrenzung nach § 5 der StrlSchV ... nicht eingehalten oder die bergtechnische Sicherheit nicht mehr gewährleistet werden kann. Sind die Rückholung sowie alle Optionen zur Stilllegung nur unter Abweichung von gesetzlichen Anforderungen möglich, ist die Schachtanlage Asse II mit der nach einer Abwägung der Vor- und Nachteile bestmöglichen Option stillzulegen. ... Die Dosisgrenzwerte der StrlSchV ... für die Bevölkerung und für die beruflich strahlenexponierten Personen dürfen ... nicht überschritten werden.

(3) Bis zur Bestandskraft eines Planfeststellungsbeschlusses zur Stilllegung bedarf der Umgang mit radioaktiven Stoffen einer Genehmigung nach den Vorschriften dieses Gesetzes oder der StrlSchV ...

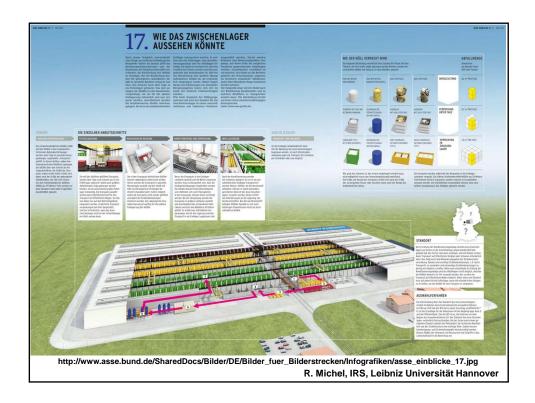

Entwicklungen der Schachtanlage: 2010 - 2013

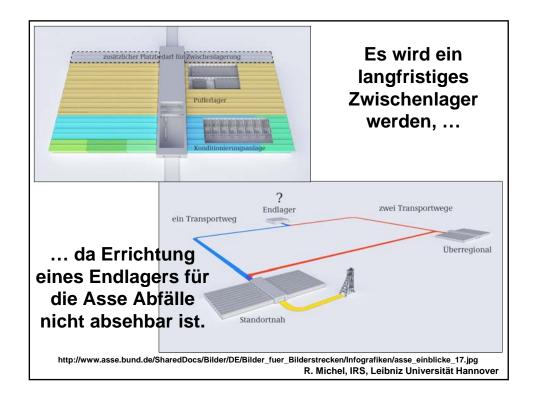
- Die Konvergenz des Grubengebäudes verlagert sich von der (verfüllten) Südflanke in das Zentrum der Grube.
- ➤ Die Infrastrukturräume auf der 490 m Sohle drohen verloren zu gehen und müssen mittelfristig aufgegeben werden.
- ➤ Die Wendel ist insgesamt sanierungsbedürftig. Sie war 2012 bereits gesperrt. Sanierungsmaßnahmen greifen nur auf Zeitskalen von ca. 5 Jahren.
- > Der Füllort auf der 750 m Sohle ist sanierungsbedürftig.
- > Schacht 2 ist sanierungsbedürftig.
- Engpässe bei Bewetterung, Elektrizitätsversorgung und Fluchtwegen limitieren den Einsatz von Menschen und Maschinen.
- > Die Grube verfällt und wird nur mit Sonderbetriebsplänen offen gehalten.




Entwicklungen der Schachtanlage: 2010 - 2013

- Die Zutrittslösungen sind in den Einlagerungskammern der 750 m Sohle in Kontakt mit den Abfällen und sind dementsprechend kontaminiert.
- Es bestehen Probleme nicht kontaminierte Lösungen abzugeben. Kontaminierte Lösungen müssen de facto im Bergwerk verbleiben (begrenzte Kapazität).
- ➤ Ein langfristiger Offenhaltungsbetrieb der Schachtanlage Asse II erscheint unwahrscheinlich.
- ➤ Eine Bergung der Abfälle kann nur über einen neu abzuteufenden Schacht 5, in dem auch neue Infrastrukturräume errichtet werden müssen, möglich.
- Die Zeitplanung hat sich als völlig illusorisch herausgestellt. Neuer Zeithorizont für die Vorsorge- und Notfallmaßnahmen 2024, Beginn der Rückholung nicht vor 2036, Dauer der Rückholung …?



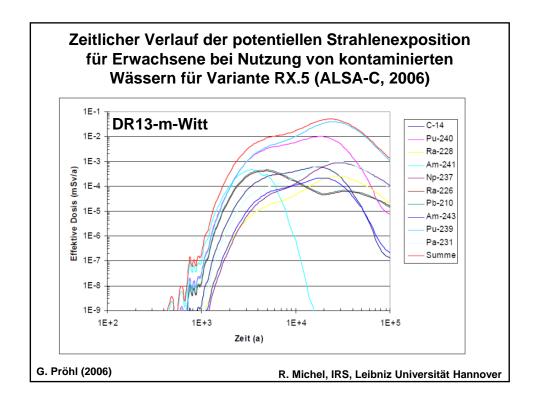


Strahlenschutzaspekte bei der Stilllegung der Schachtanlage Asse II

R. Michel, IRS, Leibniz Universität Hannover

Expositionssituation

- Die Einlagerung erfolgte auf der Grundlage gültiger Genehmigungen.
 - geplante Expositionssituation
 - > existierende Situation
 - Notfallsituation
- Entwicklung von W & T, Recht und Gesellschaft
- existierende Situation: Aufgrund der Weiterentwicklung der Wissenschaft und Technik, aber auch aufgrund der Weiterentwicklung des Atomrechts und der gesellschaftlichen Anforderungen an die Sicherheit von Endlagern muss das Endlager in der Schachtanlage Asse II aus heutiger Sicht als existierende Situation betrachtet werden. Die möglichen Maßnahmen (Optionen) zur Stilllegung haben den Charakter von Interventionen. Diese sind als geplante Expositionssituationen zu behandeln.
- ➤ Es ist eine existierende Expositionssituation ohne derzeitige Exposition. Expositionen könnten in der Zukunft auftreten.
- Rechtlich ist die Schachtanlage nach AtG wie ein Endlager mit Sonderrechten (Lex Asse) zu behandeln.


HMGU Konzept

Abschätzung der potentiellen Strahlenexposition in der Nachbetriebsphase der Schachtanlage Asse

G. Pröhl (2006) Abschätzung der potentiellen Strahlenexposition in der Nachbetriebsphase der Schachtanlage Asse, GSF-Auftrags Nr. 31/181168/99/T, FE-Nr. 76278, Oktober 2006

NRG Petten / Colenco Power Engineering AG / GRS Braunschweig , Transportmodellierung - Fluid- und Radionuklidtransport am Standort Asse. Dokumentenkennzeichen ALSA-C-1.5B-NR145, Petten, 27.07.2005

NRG, Colenco, GRS, Projekt Langzeitsicherheit Asse, Transportmodellierung, Fluid- und Radionuklidtransport am Standort Asse, Ergänzungsbericht, Dokumentenkennzeichen ALSA-C-10.4B-NR227, Petten, 12.12.2006

Maximale potentielle Strahlenexposition für Erwachsene bei Nutzung von kontaminierten Wässern für Variante RX.5 (ALSA-C, 2006)

Referenzfall:	Effektive Dosis (mSv a ⁻¹)
D13-m-Amm	0,011
D13-vD-Amm	0,0049
D13-m-Witt	0,051

G. Pröhl (2006)

R. Michel, IRS, Leibniz Universität Hannover

Schachtanlage Asse II – Abschätzung der Trinkwasserdosis bei einem unterstellten Absaufen des Schachtanlagengebäudes

AF-Colenco AG: MEMO 1299/04 (V1) 1 (14) 8. Mai 2009

Geschätzte potentielle Strahlenexposition über den Trinkwasserpfad (in mSv/a) bei einem hypothetischen Absaufen der Schachtanlage Asse II für verschiedene Zeiten bis zum Auftreten der maßgebenden Radionuklidkonzentration im genutzten oberflächennahen Wasser

Dosis für den		Transportverzögerung					
Trinkwasserpfad in mSv/a		50 Jahre	100 Jahre	300 Jahre	1000 Jahre		
**	LAW	_	9	7	4		
$V_{\text{NaCl}} = 150\ 000\ \text{m}^3$	MAW	13	8	5	3		
	Total	13	8 – 9	5 – 7	3 – 4		
**	LAW	_	10	7	4		
$V_{\text{NaCl}} = 300\ 000\ \text{m}^3$	MAW	7	4	2	1		
	Total	7	4 – 10	2 – 7	1 – 4		

700 I/a lokaler Trinkwasserverbrauch, Rührkesselmodell, keine Löslichkeitsgrenzen, keine Sorption und Rückhaltung nur Verdünnung, 1: 1.500,

Colenco (2009)

R. Michel, IRS, Leibniz Universität Hannover

Abschätzung potenzieller
Strahlenexpositionen in der Umgebung
der Schachtanlage Asse II infolge
auslegungsüberschreitender
Zutrittsraten der Deckgebirgslösung
während der Betriebsphase

GRS Braunschweig: GRS - A - 3468, Stand: 21.04.2009

Parameter	Status	Wert
Zutrittsrate in das Grubengebäude	auslegungsüberschreitend	200 m ³ /d
Einlagerungskammer: Mobilisierung der ausgewählten Radionuklide	LAW: keine Verzögerung, keine Rückhaltung	-
	MAW: keine Verzögerung, keine Rückhaltung im Basisfall; Verzögerung und Rückhaltung in Variante	0 a - 100 a
Grubengebäude: Verdünnung	Porenraum bei Berücksichtigung der Firstspaltverfüllung	-
Ausbreitung	Transportverzögerung durch Volllaufen, keine Rückhaltung	10 a - 500 a
Deckgebirge: Ausbreitung	keine Transportverzögerung, keine Rückhaltung	-
Biosphäre: Verdünnung	nach Trinkwasserverordnung [5], siehe Text	1 100
Dosiskonversionsfaktoren	in Anlehnung an AVV [3] berechnet in [15]	siehe Tab. 2

700 I/a lokaler Trinkwasserverbrauch, Rührkesselmodell, nur Verdünnung, 1 : 1100, keine Löslichkeitsgrenzen, keine Sorption und Rückhaltung

GRS - A - 3468 (2009)

GRS - A - 3468 (2009)

R. Michel, IRS, Leibniz Universität Hannover

R. Michel, IRS, Leibniz Universität Hannover

Berechnete potenzielle Strahlenexposition für den Basisfall (Gesamtinventar) zu drei Zeitpunkten nach Beginn des Szenarios (Absaufen der Schachtanlage Asse II)

Radionuklid	Potenzielle Strahlenexposition [mSv/a]						
	Erwachsene (>17 a)			Kleinkinder (<1 a)			
	40 a	80 a	130 a	40 a	80 a	130 a	
Ni-63	0,3	0,2	0,1	1,1	0,8	0,6	
Sr-90	7,9	3,0	0,90	27	10	3	
Cs-137	75	30	9,4	100	41	13	
Pu-240	8,8	8,8	8,7	31	31	31	
Th-232	<mark>16</mark>	<mark>16</mark>	<mark>16</mark>	340	340	340	
Ra-228	0,4	0,4	0,4	7,3	7,3	7,3	
Pu-241	0,8	0,1	0,01	2,0	0,3	0,03	
Am-241	39	38	35	140	130	120	
Pu-238	7,8	5,7	3,9	28	21	14	
U-234	0,8	0,8	0,8	6	6	6	
Ra-226	2,4	2,4	2,3	26	25	25	
Pb-210	0,2	0,2	0,2	1,0	1,0	1,0	
Pu-239	7,7	7,7	7,7	28	28	28	

Variante LAW: mit Kanalisierungseffekten

Eine derartige Kanalisierung der aus ELK 8/750 austretenden Lösung in der Grube würde deutlich höhere Expositionsmaxima als im Basisfall LAW verursachen.

Das Maximum wäre für beide Altersgruppen durch das langlebige Radionuklid Th-232 dominiert und daher unabhängig von Verweilzeiten im Gesamtsystem; es könnten für Erwachsene 100 mSv/a und für Kleinkinder fast 2 Sv/a erreicht werden.

Gründe sind das hohe Inventar von Th-232 in der ELK 8/750, welches einem hohen Anteil am Gesamtinventar von Th-232 entspricht, und das geringe verdünnungswirksame Volumen im kanalisierten Fließweg.

GRS - A - 3468 (2009)

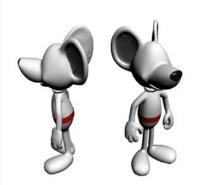
R. Michel, IRS, Leibniz Universität Hannover

ESK/SSK ad hoc AG Asse, 29.10.2009: "Abschätzung potentieller Strahlenexpositionen in der Umgebung der Schachtanlage Asse II in Folge auslegungsüberschreitender Zutrittsraten der Deckgebirgslösung während der Betriebsphase".

"Die ESK-SSK AG hat sich mit der Studie der GRS intensiv befasst, kam aber zu der Einschätzung, dass diese Arbeit fachliche Fehler enthält und einige der unterstellten Annahmen naturwissenschaftlich derzeit nicht begründet werden können."

Mein Kommentar:

- Ein unzulässig vereinfachtes Modell, dass Physik und Chemie außer Acht lässt.
- > Keine Löslichkeitsgrenzen
- > Keine Sorption und Retardierung
- Überkonservative Dosiskonversionsfaktoren
- Teilweise fehlerhafte Dosiskonversionsfaktoren


Wertung

Statt einer Fortentwicklung und Reifung der Endlagermodellierungen

bisher eine Kannibalisierung der Endlagermodellierungen!

R. Michel, IRS, Leibniz Universität Hannover

Ein iteratives Verfahren zur Modellierung der radiologischen Konsequenzen des Absaufens der Schachtanlage Asse II in den verschiedenen Optionen

Die Gesetze der Physik und Chemie dürfen dabei nicht vergessen werden! Um sich der Frage nach dem Langzeitverhalten der Asse zu nähern, benötigt man einen iterativen Ansatz der Modellierung.

- Schritt: Absaufen als "worst case Szenario" in einem Mickey Mouse Modell
- 2. und folgende Schritte: zunehmende Verfeinerung des Modells
- 3. Hinzunahme anderer Szenarien, um zu einer realistischen Hydrologie zu kommen.
- 4. Aktualisierung des Inventars (iterativ)
- 5. Szenarienvielfalt für einen eventuellen Safety Case.
- 6. ... Langzeitsicherheit ???

Ein iteratives Verfahren zur Modellierung der radiologischen Konsequenzen des Absaufens der Schachtanlage Asse II in den verschiedenen Optionen

Oberfläche

S3/D9

Asse jetzt

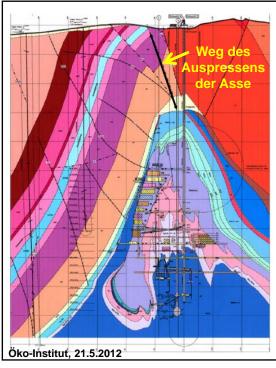
Carnallitit Auflösung

Um sich der Frage nach dem Langzeitverhalten der Asse zu nähern, benötigt man einen iterativen Ansatz der Modellierung.

- Schritt: Absaufen als "worst case Szenario" in einem Mickey Mouse Modell
- 2. und folgende Schritte: zunehmende Verfeinerung des Modells
- 3. Hinzunahme anderer Szenarien, um zu einer realistischen Hydrologie zu kommen.
- 4. Aktualisierung des Inventars (iterativ)
- 5. Szenarienvielfalt für einen eventuellen Safety Case.
- 6. ... Langzeitsicherheit ???

R. Michel, IRS, Leibniz Universität Hannover

Die Gesetze der Physik und Chemie dürfen dabei nicht vergessen werden!


2012/I-092

Modellierung des Transports von Radionukliden durch Gesteinsschichten und der resultierenden Strahlenexposition von Referenzpersonen

Berechnungen mit Parametern der Asse II

Darmstadt, 21.5.2012

Querprofil durch die Asse im Gebiet des Schachts Asse II mit dem hier untersuchten Pfad als fett markierter Linie

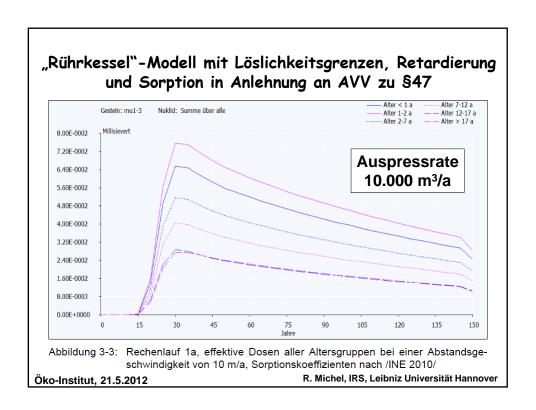
Annahmen:

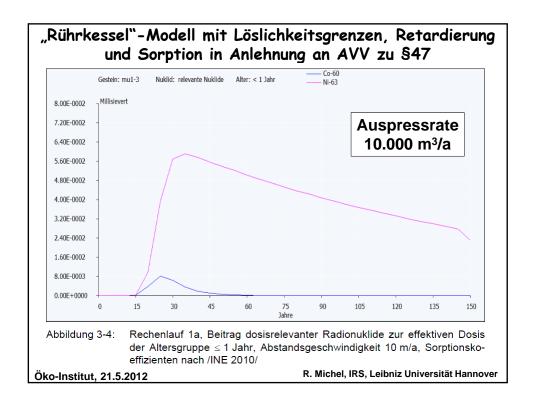
Auflösung der Abfälle in einem Rührkesselmodell mit anschließendem Auspressen der Grube aufgrund der Konvergenz des Berges.

Löslichkeitsgrenzen, Retardierung und Sorption werden berücksichtigt.

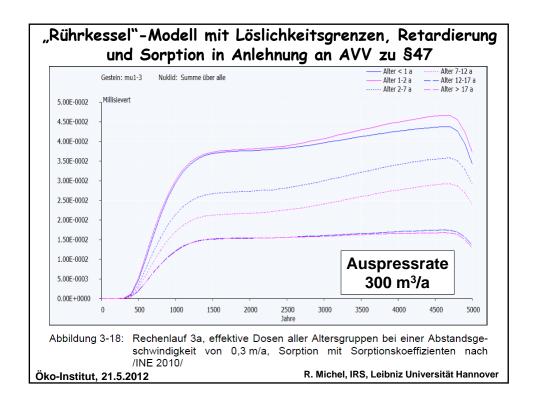
Dies ist ein Worst Case Szenario mit der kürzesten Strecke zum oberflächennahen Grundwasser.

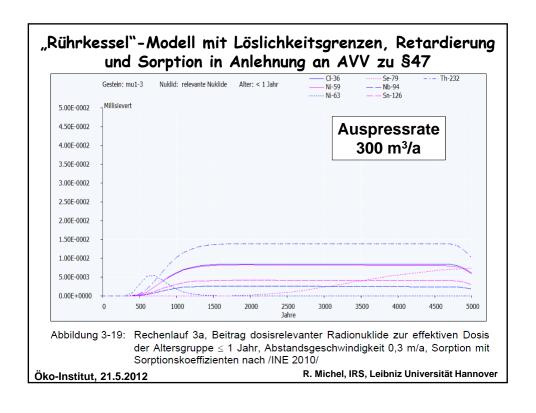
R. Michel, IRS, Leibniz Universität Hannover

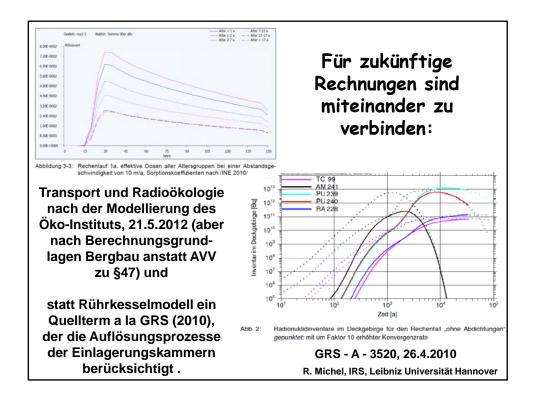

"Rührkessel"-Modell mit Löslichkeitsgrenzen, Retardierung und Sorption in Anlehnung an AVV zu §47


	1	2	3
Auspressrate in m³/a	10.000	1.000	100
Abstandsgeschwindigkeit in m/a	10	1	0,3
Dauer des Auspressens	130 a	1.300 a	4.300 a
Max. effektive Jahresdosis (Kleinkind < 1 a) in mSv	0,08	0,098	0,042
Max. effektive Jahresdosis (Erwachsener) in mSv	0,03	0,042	0,017
Zeitpunkt der maximalen Dosis	30 a	280 a	4.300 a

Transportfläche 1000 m², Ergebnisse für das jeweils ungünstigste Gestein.


Öko-Institut, 21.5.2012

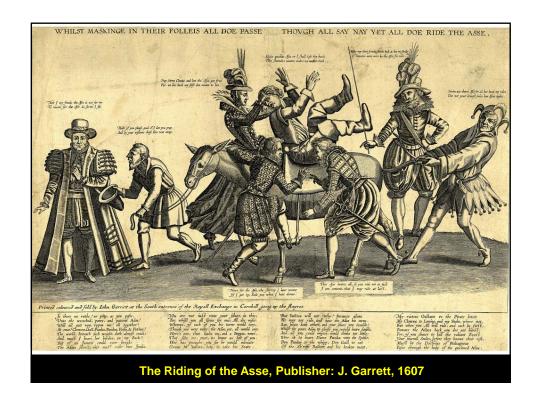




Eine Frage der Rechtfertigung

- Eine robuste Abschätzung der realen Expositionen der Arbeiter und der realen und potentiellen Expositionen der Bevölkerung bei der Rückholung ist auf der Grundlage des derzeitigen Kenntnisstandes nicht möglich.
- > Es sollte alles daran gesetzt werden, den Kenntnisstand zu verbessern.
- Vordringlich ist jedoch alles zu unternehmen, die Auswirkungen eines auslegungsüberschreitenden Lösungszutritts zu minimieren.
- Der Vergleich realer Expositionen von Arbeitern und Bevölkerung durch die Rückholung mit potentiellen Expositionen der Bevölkerung in ferner Zukunft verlangt eine Fortschreibung der Dosisabschätzungen und eine ethische Bewertung auf der Basis von ICRP 103.
- Ich stelle die Forderung nach einem zyklischen Prüfung der Vertretbarkeit, in der die Frage nach der Rechtfertigung der verbleibenden Optionen immer wieder zu beantworten ist.

Kriterien für die Beurteilung von Tätigkeiten und Verfahren im Hinblick auf eine Rechtfertigung


Empfehlung der Strahlenschutzkommission mit Begründung und Erläuterung der Empfehlung

Verabschiedet in der 205. Sitzung der Strahlenschutzkommission am 16./17. Februar 2006

Schlussfolgerungen

- Der Optionenvergleich von 2010 entbehrt seiner Grundlagen.
- > Vorsorge- und Notfallmaßnahmen tun not.
- > Faktenerhebung tut not.
- > Rechtfertigung tut not.
- ➤ Es ist eine zyklische Überprüfung der Vertretbarkeit erforderlich.
- > Langzeitbetrachtungen tun not.
- > Trennung von Betreiberschaft und Aufsicht tut not.
- > Offene Information tut not.
- ... und bis dahin ...

