Harrisburg war nur der Anfang – Geschichte einer Katastrophe
In den Morgenstunden des 27. März 1979 kam es in USA zu dem bis dahin größten Unfall in der Geschichte der sogenannten zivilen Atomenergienutzung. Im Block 2 des Atomkraftwerks Three Mile Island, in der Nähe von Harrisburg, Pennsylvania, geschah das, was die gesamte Atomzunft bislang für ausgeschlossen hielt: Aufgrund zahlreicher Pannen und Defekte in den Sicherheitssystemen der Anlagen versagte die Kühlung des Reaktors, die hochradioaktiven Brennelemente wurden freigelegt und schmolzen. Tagelang drohte der Reaktor zu explodieren. Jochen Schramm von der Hamburger Umweltschutzgruppe Physik / Geowissenschaften erinnert an die Katastrophe, deren Auswirkungen noch nicht abgeschlossen sind. (Foto: DOE)
In der Mitternachtsschicht sind zwei Arbeiter an einem der acht Kondensatreiniger des AKWs beschäftigt. Es sind riesige Tanks mit Reinigungsharzen, die das Speisewasser von Verschmutzungen freihalten sollen. Immer wieder setzten sich in den Kondensatreinigern Klumpen von Dreck ab, verstopften die Ausflüsse und mußten regelmäßig aus dem System genommen werden. Mit Preßluftschüben wurden die Klumpen gelockert, bis die Anlage wieder arbeitete.
Preßluft ist im Kraftwerk überall von Nöten und schafft oft Abhilfe bei technischen Störungen. Mehrere Querverbindungen im Preßluftsystem des Atomkraftwerkes Three Mile Island waren im Laufe der Zeit entstanden, aber nie dokumentiert worden. Es gab sogar Verbindungsleitungen zwischen der technischen Luftversorgung und dem hydropneumatischen Steuerungssystem mehrerer Sicherheitsventile.
Die Arbeiter beseitigten das Verstopfungsproblem. Allerdings übersahen sie, daß dabei eine kleine Undichtigkeit im Preßluftventil entstanden war. Als der Kondensator wieder ans Netz ging und der Druck stieg, drückte Wasser beständig in die Preßluftleitung.
Am 27. März 1979 um 3.57 Uhr erreichte das Wasser mehrere Sicherheitsventile: Fast alle Ventile im Speisewassersystem sperrten gleichzeitig. Die Speisewasserpumpen, so groß wie Betonmisch-LKWs, wurden vom Wasserschlag getroffen, rissen teilweise aus ihren riesigen Halterungen.
Wenige Sekunden später schaltete das automatische Kontrollsystem die Turbine ab, die Kontrollstäbe schossen in den Reaktor. Bis jetzt verlief alles planmäßig: Spezielle Notkühlpumpen starteten unverzüglich, um die auftretenden Wärmespitzen abzubauen. Doch bei Wartungsarbeiten wenige Tage zuvor war vergessen worden, die Sperrventile wieder zu öffnen. Zwar zeigte eine Lampe im Kontrollraum an, daß die Ventile geschlossen waren. Doch die wurde von einen Zettel an einem benachbarten Schalter, der auf andere Störungen hinwies, verdeckt. So blieb unbemerkt, daß das Notkühlwasser den Reaktor gar nicht erreichte.
Während die Temperatur im Reaktor nun schnell anstieg, erhöhte sich der Druck. Ein spezieller Tank, der sog. Druckhalter innerhalb des Sicherheitsbereichs (Containment), öffnete nun ein Ventil, das Dampf an einen Speichertank abgeben und danach wieder schließen sollte. Das Ventil öffnete, schloß aber nicht mehr: Im Kontrollraum aber wurde gemeldet: „Ventil geschlossen.“
Die Situation spitzte sich zu: Bei fallender Temperatur und fallendem Druck droht das Kühlmittel an den Brennelementen aufzukochen. Dampf kühlt jedoch wesentlich schlechter als Wasser und fehlende Kühlung überhitzt die Brennelemente, die dann zu platzen drohen. Ein komplett gefüllter Druckhalter, so wie es die Instrumente vorgaukelten, war unbedingt zu vermeiden, denn bereits leichte Vibrationen im Kühlsystem könnten das gesamte System zum Bersten bringen. Die Operateure entschieden daher, Wasser abzulassen.
Nun gab es zwei Lecks für das Wasser, das defekte Druckhalterventil und die Ablaßpumpen. Der Druck fiel jetzt noch schneller.
Endlich entdeckte ein Operateur die Lampe der geschlossenen Notkühlung und riß die Ventile auf. Kaltes Kühlmittel ergoß sich auf die überhitzten Pumpen und Leitungen. Ein Wärmetauscher zwischen den Kühlkreisläufen platzte, radioaktives Wasser verseuchte sofort den Turbinenkreislauf. Doch wegen des geringen Drucks begann das Wasser zu kochen und die ersten großen Dampfblasen schossen durch die Kühlleitungen. Nun traten starke Vibrationen in den Kühlpumpen auf: die Kontrollmannschaft schaltete sie ab. Schließlich platzte der Speichertank, in den das Ventil des Druckhalters pausenlos hineinblies. Radioaktives Wasser strömte in das Containment. Von hier wurde das Wasser in einen außerhalb des Gebäudes befindlichen Tank gepumpt. Aber auch diese Pumpe funktionierte nicht fehlerfrei und leckte stark. Das radioaktive Leckwasser konnte jetzt ungehindert in den Susquehanna-Fluß abfließen. Gleichzeitig drangen die freigesetzten Spaltgase durch die Dachlüftung in die Umwelt. Insgesamt wurden ca. 1,5 Mio. Liter Wasser und eine nicht bezifferbare Menge Gas abgelassen.
Wie es zu diesem Zeitpunkt im Inneren des Reaktors aussah, war für die Kontrollmannschaft nicht mehr klar. Die Drucker des Meldecomputers waren angesichts der gigantischen Menge an Störungsmeldungen um Stunden hinter der Zeit zurück. Mit einem von Hand verdrahteten Multimeter erfuhr man lediglich, daß die Reaktortemperatur 1000°C statt der üblichen 350°C erreicht hatte. Die Operateure verwarfen diese Messungen als Falschwerte.
Im Reaktor begann nun die Kernschmelze. Die hohen Temperaturen zerstörten die meisten der inneren Brennelemente und das Spaltmaterial bröselte zum Reaktorboden. Ein Arbeiter, verpackt in schwere Strahlenschutzkleidung, zog noch eine letzte Wasserprobe aus dem Kühlkreislauf: schwarz, sprudelnd, schaumig.
Erst nach zwei Stunden, als die Frühschicht zur Arbeit kam, wurde der tatsächliche Zustand des Abblaseventils erkannt. Ein vorgeschaltetes Ventil wurde geschlossen, – der Druck begann unverzüglich wieder zu steigen. Um Haaresbreite schrammte TMI an der Katastrophe vorbei: Nur wenige Minuten später und der Bröselhaufen hätte sich in eine glühende Soße verwandelt, hätte sich zuerst durch den Boden des Reaktors geschmolzen, dann durch das Gebäudefundament und schließlich beim Kontakt mit dem Grundwasser Wolken radioaktiver Spaltprodukte rund um den Globus geschickt.
Immerhin konnte jetzt eine der Hauptkühlpumpen in Betrieb genommen und der stark demolierte Reaktorkern mit Kühlung versorgt werden.
Erst 1982 gelang es den Technikern, mit Kameraaufnahmen eingeschränkte Blicke in das Reaktorinnere zu erhalten. Aus dem zerbröselten Brennelementschrott am Grund des Reaktors konnte man Rückschlüsse auf Temperaturen während der Katastrophe ziehen: Die Reaktortemperatur war nur knapp 100°C unter der Schmelztemperatur für Uran zum Stehen gekommen. Bis in die 90er Jahre benötigten Techniker mit ferngesteuerten Greifarmen einen Teil des Uranschrotts herauszuholen.
Evakuierung
Die Katastrophe begann mitten in der Nacht. Um 7.20 Uhr wurden innerhalb des Containments extreme Strahlungswerte von 800 Rem gemessen – unmittelbar tödlich für jedermann. Hilfskräfte wurden deshalb mit Meßgeräten in die Umgebung und in die Städte Goldsboro, Middletown und Harrisburg geschickt. Noch waren die Werte um 0,1 Millirem normal, noch hielt die Gebäudeabschirmung scheinbar stand.
Um 12.45 wurde in den Hilfsgebäuden der Anlage eine Strahlungsdosis bis zu 1000 Rem festgestellt, Hubschrauber begannen regelmäßig die Strahlungswerte über dem Reaktorgebäude zu messen. Am nächsten Morgen lagen die Meßwerte zwischen einem und zehn Millirem am Susquehanna-Fluß – mit steigender Tendenz.
Der Katastrophenstab stand unter massivem Druck: Evakuierung ja oder nein? Wenn ja, wann? In welchem Umkreis? Nur in Windrichtung? Eventuell nur schwangere Frauen und Kleinkinder? Je nach Befinden des tollwütigen Reaktors wurden Evakuierungspläne besprochen und wieder verworfen. Erst fünf Meilen um das AKW, dann 10 Meilen. Was tun mit den Krankenhäusern? Plötzlich stand die Evakuierung von 650.000 Menschen, dreizehn Krankenhäusern und einem Gefängnis bevor. Dann doch nur fünf Meilen, da gab es keine Krankenhäuser. Schließlich einigte man sich auf eine 5-Meilen-Empfehlung für schwangere Frauen und Kinder. Innerhalb von zehn Meilen solle man Fenster und Türen geschlossen halten und Jodtabletten einnehmen. Aber Jodtabletten waren nirgends zu bekommen. Erst nach sechs Tagen hatte man eine Pharmafirma gefunden und konnte die Jodtabletten austeilen. Die letzten Ortschaften erhielten die Jodtabletten weitere fünf Tage später.
Im Landkreis Goldsboro hatten schon drei Tage nach dem Unfall 90 Prozent aller Einwohner fluchtartig die Gegend verlassen.
Es knallt
Zehn Stunden nach Beginn der Katastrophe wurde das gesamte AKW-Gebäude durch eine heftige Explosion erschüttert. Sie war vergleichbar mit der Stärke einer 500-Kilo-Bombe. Ausgelöst wurde sie durch eine Wasserstoff-Sauerstoff Reaktion innerhalb des Containments. Immerhin hielten die Betonstrukturen dieser Explosion stand, sie war auf die doppelte Stärke ausgelegt. Verniedlichend sprach man später nur noch von einem „Bump“, einem Bums.
Das Phänomen war neu und gehörte nicht zu den Sicherheitsszenarien der AKW-Betreiber. Hilflos stand man dem Fakt nun gegenüber.
In den Rohren der Brennelemente ist Uran in Tablettenform aufgereiht. Die Wandung besteht aus einer Legierung des Metalls Zirkonium. Bei sehr hohen Temperaturen findet zwischen Wasser und Zirkonium eine chemische Reaktion statt, bei der Wasserstoffgas entsteht. Im Laufe der Katastrophe hatte sich eine große Wasserstoffblase im oberen Teil des Reaktorbehälters gesammelt, ein anderer Teil gelangte über das defekte Druckhalterventil in das Containment. Wasserstoff reagiert sehr heftig, wenn es auf Sauerstoff trifft: der „Knallgas-Effekt“. Im Reaktor existierte (noch) kein Sauerstoff, aber im Containment konnte sich die Mischung selbst entzünden. Wäre nur wenig mehr in das Gebäudeinnere entwichen, wären die Auswirkungen der Katastrophe mit der von Tschernobyl vergleichbar gewesen.
Eine sofort eingesetzte Spezialistengruppe schaffte es, in den folgenden Tagen Wasserstoff-Rekombinationsgeräte zu installieren, die die Blase langsam abbauen sollten. Ungewiß blieb, ob sich nicht auch innerhalb des Reaktors Sauerstoff bilden könnte und der Knall unmittelbar bevorstand. Die Blase verschwand jedoch so mysteriös wie sie entstanden war. Zunächst hatte sie sich in mehrere kleinere Blasen zerteilt, dann war alles weg. Der Grund konnte nicht analysiert werden.
Die späteren Folgen
Der Zustand des Reaktors ist seit 1979 nahezu unverändert. Ferngesteuerte Geräte und Roboter führen Aufräumarbeiten durch, und an eine Rückkehr zur „Normalität“ ist auch in den nächsten Jahrzehnten nicht zu denken. Der Reaktor befindet sich im „Monitor-Status“ und muß weiterhin technisch versorgt werden. Ein Rest des Brennstoffs befindet sich noch immer im Reaktor.
Bereits während des Desasters begannen Betreiber und öffentliche Stellen, die „Leistungsexkursion“ von TMI-2 zu zerreden. Schließlich sei der Reaktor auch noch intakt und eine größere Katastrophe nicht eingetreten. Die Radioaktivitätsmessungen der Hubschrauber über dem AKW mit Werten über 3.000 Millirem wurden entweder verworfen oder blieben als nicht repräsentative Einzelwerte unbeachtet.
Auch in Deutschland begannen die Freunde des Urans unverzüglich mit beschwichtigenden Erklärungen: In einem deutschen AKW sei ein solcher Störfall nicht möglich, was insofern stimmte, als es damals in Deutschland ein solches Kraftwerk der Firma Brown Boverie gar nicht gab. Was allerdings verschwiegen wurde, eine direkte Kopie von Three Mile Island 2, das AKW Mühlheim-Kährlich, war seit 1975 im Bau.
Eine Belastung der Umgebung, sprich Menschen, Tiere, Pflanzen, hat es entsprechend öffentlicher Verlautbarungen natürlich nicht gegeben. Kurz nach der Katastrophe, im Mai 1979, bildete das Landwirtschaftsministerium (DOA) von Pennsylvania eine Ermittlungsgruppe aus 10 Personen, zwei davon Tierärzte. Innerhalb von zwei Tagen wurden 100 Farmen besucht. Der Bericht sprach von fünf Landwirten, die Probleme beklagten. Einer beispielsweise berichtete, daß zwei Tage nach dem Unfall Hühner wie wild herumflatterten und Schweine nicht mehr aus dem Stall wollten. Zwei Monate später waren 27 Hühner und 11 Schweine gestorben. Diese Berichte wurden als unerklärliche Einzelfälle bewertet – Auswirkungen des Reaktorstörfalls wurden von offizieller Seite für nicht existent erklärt. Drei Monate später war jedoch die Reporterin Laura Hammel von „The News-American“ aus Baltimore der Sache nachgegangen und berichtete, daß der DOA-Report „ungeheuer untertrieben“ hätte. Ihren Nachprüfungen zufolge hatten nicht 5 sondern 40 Bauern über Probleme seit dem Durchbrennen des Reaktors geklagt. Viele der Beschwerden waren als irrational oder nicht nachprüfbare Horrorstories verworfen worden. Manche Farmen wurden trotz mehrerer Meldungen nie besucht.
Im Frühjahr 1980 wiederholte die Nukleare Regulierungs-Kommission (NRC) eine Schadensbilanz – wiederum mit dem Ergebnis: „keine erkennbaren Zusammenhänge“. Von den aufgezählten 35 Krankheitsfällen auf den Höfen wurden diesmal mehr als die Hälfte mangels Daten oder „unbekannter Ursache“ nicht dem Reaktorunfall zugerechnet.
Ende 1979 veröffentlichte der Mediziner Ernest Sternglass einen Bericht über das überdurchschnittliche Ansteigen der Säuglingssterblichkeit in Pennsylvania, besonders in der Nähe von TMI. Das Gesundheitsamt dementierte prompt und begann eine Kontroverse um Zahlen und Statistik. 1980 ergänzte Dr. MacLeod, ein früherer Mitarbeiter des Gesundheitsamtes, daß auch Schilddrüsenerkrankungen im Abluftbereich des AKWs erhöhte Raten aufwiesen.
Im August 1996, 17 Jahre nach dem Unfall, erschien eine neue Studie des Medizinprofessors Steve Wing (University of North Carolina). Er hatte die Krebssterbefälle in der Umgebung von Three Mile Island untersucht und kam zu dem Urteil, daß Lungenkrebs und Leukämie in der Hauptwindrichtung des AKWs zwei bis zehnfach häufiger auftraten als in der Gegenrichtung.
Trotz aller Fakten waren in der Vergangenheit über 2000 Schadensersatzklagen wegen nicht ausreichender Beweise abgelehnt worden.
Nicht kontrollierbar
Seit dem Kernschmelzen in Three Mile Island ist in den USA kein neues AKW in Betrieb gegangen. Die Diskussion um die Sicherheitskonzepte endete bislang in der Feststellung von Shirley Jackson, Vorsitzender der Nuklearen Regulierungs-Kommission NRC am 1. April 1997: „Die NRC glaubt, daß die Glaubwürdigkeit an die freiwilligen Leistungen über konstruktionsabhängige Informationen, die die Industrie in der Vergangenheit erbracht hat, nicht ausreichen, eine sichere Kontrolle einer Reihe von Anlagen zu gewährleisten.“
Aus Mangel an Kenntnissen über die technischen Details der AKWs kann jederzeit erneut ein Three Mile Island Desaster entstehen. In einem hochkomplexen Technikmoloch können überdies Dinge geschehen, an die zum ersten Mal erst gedacht wird, wenn sie passieren, wie das Beispiel Wasserstoff zeigt. Menschliche Fehlleistungen können überall geschehen, wie Spickzettel über Warnlampen gezeigt haben. Unfähige Behörden wird es immer wieder geben, wie das Chaos der Katastrophenplanung zeigte. Und unkooperative und vertuschende Firmen wird es überall geben, wo viel Geld im Spiel ist – und AKWs kosten viel.
All dies ist nicht sehr beruhigend, wenn an die vielen hundert Reaktoren gedacht wird, die derzeit weltweit an einem ersten Auftritt im Three Mile Island Tschernobyl Theater proben.
Jochen Schramm
Weitere Infos im Internet unter: www.enviroweb.org/tmia/croom.htm
Quelle: aus: ak – analyse & kritik, Zeitung für linke Debatte und Praxis / Nr. 424 / 18.03.1999